上一頁下一頁
【Linker商店街】寶山溫水釣蝦休閒廣場
【Linker商店街】鹿港觀光三輪車
【Linker商店街】陳贊民高中數學家教
【Linker商店街】豬哥亮口味香腸(伸港店)
【Linker商店街】大仲馬之宴
【Linker商店街】伊仕丹日式精品服飾
【Linker商店街】鹿和寵物休閒餐廳
【Linker商店街】右舍咖啡
【Linker商店街】池國嘉攝影師
【Linker商店街】蜜魯手工窯烤. 彰化披薩. 手工披薩. 手工窯烤. 蝦爸. 蜜魯手工. 蜜魯
蜜魯手工窯烤
【Linker商店街】員林長頸鹿 (靜修分校)
02
長頸鹿美語,長頸鹿美語(靜修分校),幼兒美語,員林美語,員林補習班,
02
03
04
05
06
【Linker商店街】蜜魯手工窯烤. 彰化披薩. 手工披薩. 手工窯烤. 蝦爸. 蜜魯手工. 蜜魯
002
0033
004
005
006
Linker商店街】百麗美容美髮補習班
【Linker商店街】 花都藝術花坊
【Linker商店街】徐薇英文華藝分校
【Linker商店街】雲軒文苑
【Linker商店街】坂蘭亭園和風洋食館
【Linker商店街】國民黨彰化縣黨部
【Linker商店街】中一生命禮儀事業
【Linker商店街】中一生命禮儀事業
【Linker商店街】利民當舖
中信眼鏡
中信眼鏡gif
明星花坊
億得滿
德馨補習班
鹿港御品gif
同新中古機車
龍山麵線糊
吳敦厚燈舖
大明宏陽生命禮儀
丁家大宅
彰化市焗石樂創意料理
彰化市焗石樂創意料理
環球
北門
奇比童裝
環球不動產
良古早味
環球不動產
上一頁下一頁
相片最新留言
此相簿內的相片目前沒有留言
此相簿內的相片出現在:
- 【linker商店街】大明宏陽生命禮儀 彰化禮儀社. 大明. 宏陽. 大明殯葬. 宏陽殯葬. 生命禮儀. 和美生命禮儀. 彰化生命禮儀
- 【linker商店街】焗石樂創意料理,彰化簡餐,彰化焗石樂,彰化美食,彰化市焗烤,彰化義大利麵,彰化鍋巴,焗石樂
- 【Linker商店街】北斗環球不動產,彰化不動產,彰化房屋仲介,北斗不動產,北斗房屋仲介,彰化土地買賣,北斗土地買賣,房屋買賣,土地開發,各項貸款,買賣價金信託,環球仲介,買房子,看屋,買屋,土地,別墅,透天
- 【Linker商店街】奇比童裝 & PaPaMaMa親子童裝,奇比童裝,PaPaMaMa親子童裝,彰化奇比,彰化PaPaMaMa,親子童裝
- 【房仲】北斗環球不動產,環球不動產仲介企業社
相簿列表資訊
- 最新上傳:
- 2012/07/31
- 全站分類:
- 創作設計
- 本日人氣:
- 0
- 累積人氣:
- 3634
沒有一個工作是卑微的,
只有當你失去熱情與鬥志,
才是卑微的開始。
一個人的價值,往往是取決於你如何看待自己。
http://goo.gl/KQMvS
常見的半導體材料有矽、鍺、砷化鎵等
/
晶片測試
晶片處理高度有序化的本質增加了對不同處理步驟之間度量方法的需求。晶片測試度量裝置被用於檢驗晶片仍然完好且沒有被前面的處理步驟損壞。如果If the number of dies—the 積體電路s that will eventually become chips—當一塊晶片測量失敗次數超過一個預先設定的閾值時,晶片將被廢棄而非繼續後續的處理製程。
/
晶片測試
晶片處理高度有序化的本質增加了對不同處理步驟之間度量方法的需求。晶片測試度量裝置被用於檢驗晶片仍然完好且沒有被前面的處理步驟損壞。如果If the number of dies—the 積體電路s that will eventually become chips—當一塊晶片測量失敗次數超過一個預先設定的閾值時,晶片將被廢棄而非繼續後續的處理製程。
/
步驟列表
晶片處理
濕洗
平版照相術
光刻Litho
離子移植IMP
蝕刻(干法蝕刻、濕法蝕刻、電漿蝕刻)
熱處理
快速熱退火Annel
熔爐退火
熱氧化
化學氣相沉積 (CVD)
物理氣相沉積 (PVD)
分子束磊晶 (MBE)
電化學沉積 (ECD),見電鍍
化學機械平坦化 (CMP)
IC Assembly and Testing 封裝測試
Wafer Testing 晶片測試
Visual Inspection外觀檢測
Wafer Probing電性測試
FrontEnd 封裝前段
Wafer BackGrinding 晶背研磨
Wafer Mount晶圓附膜
Wafer Sawing晶圓切割
Die attachment上片覆晶
Wire bonding焊線
BackEnd 封裝後段
Molding模壓
Post Mold Cure後固化
De-Junk 去節
Plating 電鍍
Marking 列印
Trimform 成形
Lead Scan 檢腳
Final Test 終測
Electrical Test電性測試
Visual Inspection光學測試
Baking 烘烤
/
有害材料標誌
許多有毒材料在製造過程中被使用。這些包括:
有毒元素摻雜物比如砷、硼、銻和磷
有毒化合物比如砷化三氫、磷化氫和矽烷
易反應液體、例如過氧化氫、發煙硝酸、硫酸以及氫氟酸
工人直接暴露在這些有毒物質下是致命的。通常IC製造業高度自動化能幫助降低暴露於這一類物品的風險。
/
Device yield
Device yield or die yield is the number of working chips or dies on a wafer, given in percentage since the number of chips on a wafer (Die per wafer, DPW) can vary depending on the chips' size and the wafer's diameter. Yield degradation is a reduction in yield, which historically was mainly caused by dust particles, however since the 1990s, yield degradation is mainly caused by process variation, the process itself and by the tools used in chip manufacturing, although dust still remains a problem in many older fabs. Dust particles have an increasing effect on yield as feature sizes are shrunk with newer processes. Automation and the use of mini environments inside of production equipment, FOUPs and SMIFs have enabled a reduction in defects caused by dust particles. Device yield must be kept high to reduce the selling price of the working chips since working chips have to pay for those chips that failed, and to reduce the cost of wafer processing. Yield can also be affected by the design and operation of the fab.
Tight control over contaminants and the production process are necessary to increase yield. Contaminants may be chemical contaminants or be dust particles. "Killer defects" are those caused by dust particles that cause complete failure of the device (such as a transistor). There are also harmless defects. A particle needs to be 1/5 the size of a feature to cause a killer defect. So if a feature is 100 nm across, a particle only needs to be 20 nm across to cause a killer defect. Electrostatic electricity can also affect yield adversely. Chemical contaminants or impurities include heavy metals such as Iron, Copper, Nickel, Zinc, Chromium, Gold, Mercury and Silver, alkali metals such as Sodium, Potassium and Lithium, and elements such as Aluminum, Magnesium, Calcium, Chlorine, Sulfur, Carbon, and Fluorine. It is important for those elements to not remain in contact with the silicon, as they could reduce yield. Chemical mixtures may be used to remove those elements from the silicon; different mixtures are effective against different elements.
Several models are used to estimate yield. Those are Murphy's model, Poisson's model, the binomial model, Moore's model and Seeds' model. There is no universal model; a model has to be chosen based on actual yield distribution (the location of defective chips) For example, Murphy's model assumes that yield loss occurs more at the edges of the wafer (non-working chips are concentrated on the edges of the wafer), Poisson's model assumes that defective dies are spread relatively evenly across the wafer, and Seeds's model assumes that defective dies are clustered together.[25]
Smaller dies cost less to produce (since more fit on a wafer, and wafers are processed and priced as a whole), and can help achieve higher yields since smaller dies have a lower chance of having a defect. However, smaller dies require smaller features to achieve the same functions of larger dies or surpass them, and smaller features require reduced process variation and increased purity (reduced contamination) to maintain high yields. Metrology tools are used to inspect the wafers during the production process and predict yield, so wafers predicted to have too many defects may be scrapped to save on processing costs.[26]